Mined silica sand will most likely need to travel by rail to its next destination. Some mines have direct or quick access to a railway, but others will undoubtedly need to transport the sand by truck to the nearest rail terminal. These trucks will be heavy and will continuously be driven back and forth on whichever road networks are available. If each county is responsible for maintaining their roads, what will be the cost of upkeep? In this analysis, a hypothetical value of 2.2 cents is used as the cost per mile that a truck drives and it was assumed that each mine will send one truck on 50 trips a year. Network analysis was performed on the results of python script #2 and a feature class of rail terminals to determine a route for each mine to the closest terminal. Model builder in ArcMap 10.2 was used to create the route and calculate a total length of trucking per county per year (Model 1).
- Methods -
Model 1: Workflow to determine the cost in dollars per year per county from sand trucking |
- Results -
Table 1: The route length and cost per year for each of the affected counties. |
Map 1: Map illustrating the cost per year per county to maintain road networks of likely sand trucking activity, based on hypothetical data. |
- Discussion -
The total amount of money each county would have to spend was lower than expected. The county with the most trucking and highest cost was Chippewa County (~$455) followed by Wood County (~$327). The least amount of trucking and lowest cost was Burnett County (~$1.50). Six of the twenty-four counties had costs below $10 dollars a year. The counties with low cost was often due to rail terminals being located just within their border resulting in only a small portion of different truck routes coming from other counties to actually be located in that specific county. Overall, the numbers may be underestimated because of the hypothetical cost of 2.2 cents a mile and the assumption that there would only be fifty truck trips per mine to unload sand at a rail terminal per year. Map 1 clearly illustrates that counties with more mines located a distance away from rail terminals tend to experience more trucking, which only makes sense. Chippewa and Wood Counties have more individual mines in need of trucking than all but one county, and therefore, incur the largest costs per year to maintain their road networks. Trempealeau County is a slight exception to this rule because it has the largest amount of mines and does not have the highest cost, though it does have the 7th. This is due to the fact that the mines in Trempealeau County are all located in a cluster near a rail terminal making the routes short compared to other counties.
- Conclusions -
The two important factors in determining the impacts of increased trucking on road networks per county in western Wisconsin are the number of mines that need trucking and the distance these mines are located away from the closest rail terminal. Performing network analysis by creating a 'closest facility' layer in ArcMap allowed for the length of possible routes and costs associated with maintaining the road networks to be calculated. These calculated costs are hypothetical. Another important consideration in network analysis is having a quality network dataset. The network data set used in this analysis was produced by ESRI and allowed for accurate routing. Without a high quality network dataset, routing errors are introduced which limits the effectiveness of network analysis.
- Sources -
Environmental Systems Research Institute (ESRI). Street map USA, street network dataset.
Wisconsin Department of Natural Resources (WNDR). Mine data.
Wisconsin Department of Transportation (WisDOT). Rail terminal data.
No comments:
Post a Comment